В этой статье мы разберемся с понятием прямой линии в трехмерном пространстве, рассмотрим варианты взаимного расположения прямых и остановимся на основных способах задания прямой в пространстве. Для лучшего представления приведем графические иллюстрации.
Прямая в пространстве – понятие.
В разделе прямая на плоскости мы дали представление о точке и прямой на плоскости. Прямую линию в пространстве следует представлять абсолютно аналогично: мысленно отмечаем две точки в пространстве и проводим с помощью линейки линию от одной точки до другой и за пределы точек в бесконечность.
Все обозначения точек, прямых и отрезков в пространстве аналогичны случаю на плоскости.
Вообще, прямая линия целиком принадлежит некоторой плоскости в пространстве. Это утверждение вытекает из аксиом:
- через две точки проходит единственная прямая;
- если две точки прямой лежат в некоторой плоскости, то все точки прямой лежат в этой плоскости.
Существует еще одна аксиома, которая позволяет рассматривать прямую в пространстве как пересечение двух плоскостей: если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Взаимное расположение прямых в пространстве.
Во-первых, две прямые могут совпадать, то есть, иметь бесконечно много общих точек (по крайней мере две общие точки).
Во-вторых, две прямые в пространстве могут пересекаться, то есть, иметь одну общую точку. В этом случае эти две прямые лежат в некоторой плоскости трехмерного пространства. Если две прямые в пространстве пересекаются, то мы приходим к понятию угла между пересекающимися прямыми.





Способы задания прямой в пространстве.
Существует несколько способов, позволяющих однозначно определить прямую линию в пространстве. Перечислим основные из них.
Мы знаем из аксиомы, что через две точки проходит прямая, причем только одна. Таким образом, если мы отметим две точки в пространстве, то это позволит однозначно определить прямую линию, проходящую через них.
Если в трехмерном пространстве введена прямоугольная система координат и задана прямая с помощью указания координат двух ее точек, то мы имеем возможность составить уравнение прямой, проходящей через две заданные точки.

Таким образом, если задать прямую (или отрезок этой прямой) и не лежащую на ней точку, то мы однозначно определим прямую, параллельную заданной и проходящей через данную точку.
Рекомендуем также ознакомиться со статьей уравнение прямой, проходящей через заданную точку параллельно заданной прямой.

Если прямая задана таким способом относительно зафиксированной прямоугольной системы координат, то мы можем сразу записать ее канонические уравнения прямой в пространстве и параметрические уравнения прямой в пространстве.

Таким образом, задав две пересекающиеся плоскости, мы однозначно определим прямую в пространстве.
Смотрите также статью уравнения прямой в пространстве — уравнения двух пересекающихся плоскостей.

Таким образом, чтобы определить прямую, можно задать плоскость, которой искомая прямая перпендикулярна, и точку, через которую эта прямая проходит.
Если прямая задана таким способом относительно введенной прямоугольной системы координат, то будет полезно владеть материалом статьи уравнения прямой, проходящей через заданную точку перпендикулярно к заданной плоскости.

Список литературы.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
- Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
- Ильин В.А., Позняк Э.Г. Аналитическая геометрия.
