Эта статья дает начальное представление о тождествах. Здесь мы определим тождество, введем используемое обозначение, и, конечно же, приведем различные примеры тождеств.
Что такое тождество?
Логично начать изложение материала с определения тождества. В учебнике Макарычева Ю. Н. алгебра для 7 классов определение тождества дается так:
Определение.
Тождество – это равенство, верное при любых значениях переменных; любое верное числовое равенство – это тоже тождество.
При этом автор сразу оговаривается, что в дальнейшем это определение будет уточнено. Это уточнение происходит в 8 классе, после знакомства с определением допустимых значений переменных и ОДЗ. Определение становится таким:
Определение.
Тождества – это верные числовые равенства, а также равенства, которые верны при всех допустимых значениях входящих в них переменных.
Так почему, определяя тождество, в 7 классе мы говорим про любые значения переменных, а в 8 классе начинаем говорить про значения переменных из их ОДЗ? До 8 класса работа ведется исключительно с целыми выражениями (в частности, с одночленами и многочленами), а они имеют смысл для любых значений входящих в них переменных. Поэтому в 7 классе мы и говорим, что тождество – это равенство, верное при любых значениях переменных. А в 8 классе появляются выражения, которые уже имеют смысл не для всех значений переменных, а только для значений из их ОДЗ. Поэтому тождествами мы начинаем называть равенства, верные при всех допустимых значениях переменных.
Итак, тождество – это частный случай равенства. То есть, любое тождество является равенством. Но не всякое равенство является тождеством, а только такое равенство, которое верно для любых значений переменных из их области допустимых значений.
Знак тождества
Знак тождества обычно применяют лишь тогда, когда нужно особо подчеркнуть, что перед нами не просто равенство, а именно тождество. В остальных случаях записи тождеств по виду ничем не отличаются от равенств.
Примеры тождеств
Пришло время привести примеры тождеств. В этом нам поможет определение тождества, данное в первом пункте.
Числовые равенства 2=2 и
являются примерами тождеств, так как эти равенства верные, а любое верное числовое равенство по определению является тождеством. Их можно записать как 2≡2 и
.
Тождествами являются и числовые равенства вида 2+3=5 и 7−1=2·3, так как эти равенства являются верными. То есть, 2+3≡5 и 7−1≡2·3.
Переходим к примерам тождеств, содержащих в своей записи не только числа, но и переменные.
Рассмотрим равенство 3·(x+1)=3·x+3. При любом значении переменной x записанное равенство является верным в силу распределительного свойства умножения относительно сложения, поэтому, исходное равенство является примером тождества. Вот еще один пример тождества: y·(x−1)≡(x−1)·x:x·y2:y, здесь область допустимых значений переменных x и y составляют все пары (x, y), где x и y — любые числа, кроме нуля.
А вот равенства x+1=x−1 и a+2·b=b+2·a не являются тождествами, так как существуют значения переменных, при которых эти равенства будут неверны. Например, при x=2 равенство x+1=x−1 обращается в неверное равенство 2+1=2−1. Более того, равенство x+1=x−1 вообще не достигается ни при каких значениях переменной x. А равенство a+2·b=b+2·a обратится в неверное равенство, если взять любые различные значения переменных a и b. К примеру, при a=0 и b=1 мы придем к неверному равенству 0+2·1=1+2·0. Равенство |x|=x, где |x| — модуль переменной x, также не является тождеством, так как оно неверно для отрицательных значений x.
Примерами наиболее известных тождеств являются основное тригонометрическое тождество вида sin2α+cos2α=1 и основное логарифмическое тождество alogab=b.
В заключение этой статьи хочется отметить, что при изучении математики мы постоянно сталкиваемся с тождествами. Записи свойств действий с числами являются тождествами, например, a+b=b+a, 1·a=a, 0·a=0 и a+(−a)=0. Также тождествами являются свойства степеней, к примеру, am·an=a·m+n, свойства корней, например,
, и т.д. Большинство известных формул также представляют собой тождества, в качестве примера приведем формулу, выражающую основное свойство дроби вида
, а также одну из формул сокращенного умножения (a+b)2=a2+2·a·b+b2.
Список литературы.
- Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. — 17-е изд. — М. : Просвещение, 2008. — 240 с. : ил. — ISBN 978-5-09-019315-3.
- Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. — 16-е изд. — М. : Просвещение, 2008. — 271 с. : ил. — ISBN 978-5-09-019243-9.
- Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. — 17-е изд., доп. — М.: Мнемозина, 2013. — 175 с.: ил. ISBN 978-5-346-02432-3.
