Как оценить значения выражения — 7

Пример

Оцените значения следующих выражений: а) , б) , в) , г) arcsinx−2·arccosx.

Решение

а) Нам известны оценки значений основных элементарных функций, в частности, для решения нашего задания потребуются два результата  и . Дальше обращаемся к методу получения оценок, базирующемуся на свойствах числовых неравенств. Вычитание числа 5 из обеих частей неравенства  дает оценку . А для получения нужной нам оценки остается почленно сложить оценки одного смысла  и . Имеем

и дальше .

б) Оценку значений выражения  начинаем с двух известных нам результатов  и |x|≥0. Первый из них вытекает из известных оценок значений основных элементарных функций, второй – из оценки значений функции y=|x|. Прибавление единицы к обеим частям неравенства  дает оценку . Дальше почленно складываем оценки  и |x|≥0:

Обратите внимание: одна из складываемых оценок имеет знак строгого неравенства, поэтому полученная оценка тоже имеет знак строгого неравенства.

В результате получаем интересующую нас оценку .

в) Мы знаем, что  и −1≤sinx≤1. Для нахождения оценки значений выражения  нам придется проводить сложение оценок. Но мы имеем право складывать оценки только одного смысла. Поэтому от оценки −1≤sinx≤1 мы возьмем лишь одну часть, имеющую тот же смысл, что и оценка . То есть, откажемся от оценки −1≤sinx≤1 в пользу оценки sinx≥−1. Теперь сложим оценки одного смысла  и sinx≥−1, имеем

г) Получение оценки значений выражения arcsinx−2·arccosx начинаем с двух известных оценок арксинуса и арккосинуса: . Как действовать дальше? Покажем неправильный и правильный подход.

Неправильный подход

На базе оценки  не составляет труда получить оценку значений выражения 2·arccosx: для этого достотачно провести умножение всех частей неравенства на 2. В результате проведения этого действия имеем . А дальше почленно вычитаем из оценки  оценку , имеем

На этом этапе мы обнаруживаем, что в левой части двойного неравенства оказалось число большее, чем число в правой части. Тут мы понимаем, что что-то сделали не так. Что именно? Неверным было решение о проведении почленного вычитания оценок. Такое действие непозволительно в рамках метода получения оценок с использованием свойств числовых неравенств.

Покажем, как правильно оценить значение выражения arcsinx−2·arccosx.

Правильный подход

Выражение arcsinx−2·arccosx можно рассматривать как arcsinx+(−2·arccosx) (при необходимости обращайтесь к теории «преобразование выражения с целью получения оценки»). Дальше на базе оценки  получаем оценку значений выражения −2·arccosx, осуществляя умножение всех частей двойного неравенства на −2 и при этом изменяя знаки неравенств на противоположные, так как умножение проводится на отрицательное число:

А теперь проводим почленное сложение неравенств одинакового смысла  и . Почленное сложение находится в рамках метода получения оценок с использованием свойств числовых неравенств. Имеем

Откуда  и дальше 

Ответ:

а) 

б) 

в) 

г) 

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Математика на clever-students.ru – теория, примеры, решения